
Distributed Semi-Supervised Support Vector Machines

Simone Scardapanea,∗, Roberto Fierimontea, Paolo Di Lorenzob, Massimo
Panellaa, Aurelio Uncinia

aDepartment of Information Engineering, Electronics and Telecommunications (DIET),
“Sapienza” University of Rome, Via Eudossiana 18, 00184 Rome, Italy

bDepartment of Engineering, University of Perugia, Via G. Duranti 93, 06125, Perugia,
Italy

Abstract

The semi-supervised support vector machine (S3VM) is a well-known algo-

rithm for performing semi-supervised inference under the large margin princi-

ple. In this paper, we are interested in the problem of training a S3VM when

the labeled and unlabeled samples are distributed over a network of inter-

connected agents. In particular, the aim is to design a distributed training

protocol over networks, where communication is restricted only to neigh-

boring agents and no coordinating authority is present. Using a standard

relaxation of the original S3VM, we formulate the training problem as the

distributed minimization of a non-convex social cost function. To find a (sta-

tionary) solution in a distributed manner, we employ two different strategies:

i) a distributed gradient descent algorithm; ii) a recently developed frame-

work for In-Network Nonconvex Optimization (NEXT), which is based on

successive convexifications of the original problem, interleaved by state dif-

∗Corresponding author. Phone: +39 06 44585495, Fax: +39 06 4873300.
Email addresses: simone.scardapane@uniroma1.it (Simone Scardapane),

robertofierimonte@gmail.com (Roberto Fierimonte), paolo.dilorenzo@unipg.it
(Paolo Di Lorenzo), massimo.panella@uniroma1.it (Massimo Panella),
aurelio.uncini@uniroma1.it (Aurelio Uncini)

Preprint submitted to Neural Networks January 15, 2016

fusion steps. Our experimental results show that the proposed distributed

algorithms have comparable performance with respect to a centralized im-

plementation, while highlighting the pros and cons of the proposed solutions.

To the date, this is the first work that paves the way toward the broad field

of distributed semi-supervised learning over networks.

Keywords: Semi-supervised learning, support vector machine, distributed

learning, networks.

1. Introduction

Semi-supervised learning (SSL) algorithms are a family of techniques for

performing inference in the presence of both labeled and unlabeled data

(Chapelle et al., 2006a). Among them, in the binary classification setting

the semi-supervised support vector machine (S3VM) has attracted a large

amount of attention over the last decades (Chapelle et al., 2008). The S3VM

is based on the idea of minimizing the training error and maximizing the

margin over both labeled and unlabeled data, whose labels are included as

additional variables in the optimization problem. Since its first practical im-

plementation in Joachims (1999), inspired by previous work on transductive

learning by V. Vapnik (Vapnik, 1998), numerous researchers have proposed

alternative solutions for solving the resulting mixed integer optimization

problem, including branch and bound algorithms (Chapelle et al., 2006b),

convex relaxations (Chapelle and Zien, 2005; Li et al., 2013), convex-concave

procedures (Fung and Mangasarian, 2001), and others. It has been applied

to a wide variety of practical problems, such as text inference (Joachims,

1999), and it has given birth to numerous other algorithms, including semi-

2

supervised least-square SVMs (Adankon et al., 2009), and semi-supervised

random vector functional-link networks (Scardapane et al., 2015a).

In this paper, we are interested in designing algorithms for solving the

S3VM optimization problem, in the case when training data is distributed

across a network of interconnected agents (Scardapane et al., 2015c). In the

fully supervised case, this is a well-known scenario, which has been inves-

tigated extensively in multiple research fields, including peer-to-peer (P2P)

(Ang et al., 2013) and sensor networks (Predd et al., 2006; Barbarossa et al.,

2013), robotic swarms, and many others. In all of these settings, the underly-

ing network of agents is generally unstructured, and no centralized authority

can coordinate the overall process. Thus, distributed training algorithms are

designed based on simple local exchanges of information among neighboring

agents. A large number of decentralized algorithms have been developed for

training a supervised SVM in such a distributed scenario (Navia-Vázquez

et al., 2006; Lu et al., 2008; Forero et al., 2010), and they are briefly sum-

marized in the next section.

To the best of our knowledge, however, there is a lack of distributed

training algorithms for the SSL case over networks. Indeed, this problem

has been addressed only for specific cases, such as localization in a WSN

(Chen et al., 2011). Nonetheless, as we argue in Fierimonte et al. (2015),

there is a large number of realistic applications where the agents can benefit

from the inclusion of additional unlabeled data in the training process. As

an example, consider a distributed medical application, where multiple clin-

ical institutions possess similar databases, but privacy concerns do not allow

them to share it with a centralized institution (Clifton et al., 2002). In this

3

case, labeled data is generally scarce, while each institution has access to

a large amount of unlabeled samples. Using currently available distributed

algorithms, however, would imply discarding these unlabeled databases, re-

sulting in a possible loss of generalization accuracy.

In order to simplify our derivation, in this paper we focus on the lin-

ear S3VM formulation, whose decision boundary corresponds to an hyper-

plane in the input space. It is known that non-linear decision boundaries

can be obtained with the use of kernel functions. In that case, however,

the resulting SVM model is expressed in terms of all examples, which in a

decentralized setting are distributed among the different agents. This is a

notoriously complex problem (Predd et al., 2006), which in many contexts

hinders the applicability of the resulting algorithms. In an alternative pub-

lication (Fierimonte et al., 2015) we have explored the problem of training

a semi-supervised Laplacian SVM using a distributed computation of the

underlying kernel matrix. However, the resulting algorithm requires a large

amount of computational and/or communication resources. The algorithms

presented in this paper, instead, can be implemented even on agents with

stringent requirements in terms of power, such as sensors in a WSN. At the

same time, limiting ourselves to a linear decision boundary can be reason-

able, as the linear S3VM can perform well in a large range of settings, due

to the scarcity of labeled data (Chapelle et al., 2008).

Specifically, starting from the smooth approximation to the original S3VM

presented in Chapelle and Zien (2005), we show that the distributed training

problem can be formulated as the joint minimization of a sum of non-convex

cost functions. This is a complex problem, which has been investigated

4

only very recently in the distributed optimization literature (Bianchi and

Jakubowicz, 2013; Di Lorenzo and Scutari, 2015). In our case, we build on

two different solutions. The first one is based on the idea of diffusion gra-

dient descent (DGD) (Sayed, 2014b,a; Di Lorenzo and Sayed, 2013), arisen

from previous work in the context of distributed filtering applications (Lopes

and Sayed, 2008). The main idea of DGD is to interleave gradient descent

steps at every node, with local averaging of the estimates. The resulting al-

gorithm leads to an extremely efficient implementation. Nevertheless, since

it is a gradient-based algorithm exploiting only first order information of

the objective function, it generally suffers from slow practical convergence

speed, especially in the case of non-convex and large-scale optimization prob-

lems. Recently, it was showed in (Scutari et al., 2014; Facchinei et al., 2015;

Di Lorenzo and Scutari, 2015) that exploiting the structure of nonconvex

functions by replacing their linearization (i.e., their gradient) with a “better”

approximant can enhance practical convergence speed. Thus, we propose a

distributed algorithm based on the recently proposed In-Network Successive

Convex Approximation (NEXT) framework (Di Lorenzo and Scutari, 2015).

The method hinges on successive convex approximation techniques while

leveraging dynamic consensus (Zhu and Mart́ınez, 2010) as a mechanism to

distribute the computation among the agents as well as diffuse the needed

information over the network. Both algorithms are proved to be convergent

to a stationary point of the optimization problem. Moreover, as shown in

our experimental results, the NEXT exhibits a faster practical convergence

speed with respect to DGD, which is paid by a larger computation cost per

iteration.

5

To summarize, our main contributions with respect to the current lit-

erature on distributed learning are two-fold. Firstly, to the best of our

knowledge, this is the first work dealing explicitly with (fully) distributed

implementations of semi-supervised routines and, more specifically, semi-

supervised SVMs, paving the way to a large number of possible domains

which can benefit from the availability of these techniques. Additionally, the

present work is one of the first successful applications of optimization proto-

cols explicitly designed for distributed non-convex costs, while the majority

of works on distributed learning has focused on models giving rise to convex

optimization problems.

The rest of the paper is structured as follows. Section 2 goes briefly over

previous works on distributed SVMs in the fully supervised case. Then, Sec-

tion 3 introduces the S3VM model together with the approximation presented

in Chapelle and Zien (2005). In Section 4, we first formulate the distributed

training problem for S3VMs, and subsequently we derive our two proposed

solutions. Then, Section 5 details an extensive set of experimental results

and, finally, Section 6 concludes the paper.

Notation

In the rest of the paper, vectors are denoted by boldface lowercase letters,

e.g. a, while matrices are denoted by boldface uppercase letters, e.g. A. All

vectors are assumed column vectors. Symbol ai denotes the ith element of

vector a, and Aij the (i,j) entry of the matrix A. The operator ‖·‖2 is the

standard L2 norm on an Euclidean space. Finally, the notation a[n] is used to

denote dependence with respect to a time-instant n in an iterative procedure.

Other notation is introduced in the text when appropriate.

6

2. Related works

We start by briefly reviewing some works on distributed SVM algorithms

in the fully supervised case. Similar overviews can be found in Scardapane

et al. (2015b, Section 2.1) and Wang and Zhou (2012). Initial works in this

field were sparked by realizing that the set of support vectors represents an

efficient way of ‘compressing’ data to be sent among the neighbors. In prac-

tice, this is complicated by the fact that each agent has no principled way

of knowing whether a specific example is a support vector of the full prob-

lem. Thus, in Navia-Vázquez et al. (2006) the real set of support vectors is

approximated by a specific set chosen a priori, whose weights are updated

based on a least-square procedure. On the contrary, Lu et al. (2008) solves

the problem considering the real set of support vectors, with assured conver-

gence in a finite number of steps. Both approaches, however, are hindered by

the necessity of sending the examples throughout the network on a Hamil-

tonian cycle. The most efficient procedure up-to-date is presented in Forero

et al. (2010), where the problem is recast as multiple convex subproblems

at every node, and solved with the use of the alternating direction method

of multipliers (ADMM), an efficient procedure for distributed optimization

of convex cost functions. Indeed, ADMM is among the most widely used

methods for distributed learning of neural-like architectures, and it has been

used successfully for linear models (Mateos et al., 2010), random-vector func-

tional links networks (Scardapane et al., 2015c), recurrent neural networks

(Scardapane et al., 2015b) and others (see also the survey in Boyd et al.

(2011)).

It is worth noting that alternative approaches exploiting specific features

7

of WSN and P2P networks were investigated in Flouri et al. (2006); Hensel

and Dutta (2009); Ang et al. (2013). Additionally, for linear SVMs there

has also been interest in applying other routines from the distributed opti-

mization field. Among these, we can cite the random projection algorithm

(Lee and Nedic, 2013), dual coordinate ascent (Jaggi et al., 2014), and the

box-constrained QP (Lee and Roth, 2015).

3. Semi-Supervised Support Vector Machines

Let us consider the standard SSL problem, where we are interested in

learning a binary classifier starting from L labeled samples (xi, yi)
L
i=1 and U

unlabeled samples (x′i)
U
i=1. Each input is a d-dimensional real vector xi ∈ Rd,

while each output can only take one of two possible values yi ∈ {−1,+1}.1

The linear S3VM optimization problem can be formulated as (Chapelle and

Zien, 2005):

min
w,b,ŷ

C1

2L

L∑
i=1

l (yi, f(xi)) +
C2

2U

U∑
i=1

l(ŷi, f (x′i)) +
1

2
‖w‖22 , (1)

where f(x) = wTx + b, ŷ ∈ {−1,+1}U is a vector of unknown labels, l(·, ·)

is a proper loss function, C1, C2 > 0 are coefficients weighting the relative

importance of labeled and unlabeled samples, and ‖w‖22 is the standard reg-

ularization term (Kurková, 2005). The main difference with respect to the

classical SVM formulation is the inclusion of the unknown labels ŷ as vari-

1Multi-class problems can also be handled using any standard technique for trans-
forming them into a set of binary classification problems, e.g. one-versus-all (Rifkin and
Klautau, 2004).

8

ables of the optimization problem. This makes Problem (1) a mixed integer

optimization problem, whose exact solution can be computed only for rel-

atively small datasets, e.g. using standard branch-and-bound algorithms

(Chapelle et al., 2006b). We note that, for C2 = 0, we recover the standard

SVM formulation. The most common choice for the loss function is the hinge

loss, given by:

l (y, f (x)) = max (0, 1− yf(x))p , (2)

where p ∈ N. In this paper, we use the choice p = 2, which leads to a smooth

and convex function. Additionally, it is standard practice to introduce an

additional constraint in the optimization problem, so that the resulting vector

ŷ has a fixed proportion r ∈ [0, 1] of positive labels:

1

U

U∑
i=1

max (0, ŷi) = r . (3)

This constraint helps achieve a balanced solution, especially when the ratio

r reflects the true proportion of positive labels in the underlying dataset.

A common way of solving Problem (1) stems from the fact that, for a

fixed w and b, the optimal ŷ is given in closed form by

ŷi = sign(wTx′i + b), i = 1, . . . , U.

Exploiting this fact, it is possible to devise a continuous approximation of the

cost function in (1) (Chapelle et al., 2008). In particular, to obtain a smooth

optimization problem solvable by standard first-order methods, Chapelle and

Zien (2005) propose to replace the hinge loss over the unknown labels with

9

Signed output

-2 -1 0 1 2

L
o
ss

 v
al

u
e

0

0.2

0.4

0.6

0.8

1
Hinge

Approximation

Figure 1: For a fixed choice of w and b, max (0, 1− ŷif(x′i))
2

= max (0, 1− |f(x′i)|)
2
. This

is shown in blue for varying values of f(x′i), while in dashed red we show the approximation
given by exp

{
−5f(x′i)

2
}

.

the approximation given by exp {−sf(x)2} , s > 0. In the following, we

choose in particular s = 5, as suggested by Chapelle et al. (2008). A visual

example of the approximation is illustrated in Fig. 1. The resulting ∇S3VM

optimization problem writes as:

min
w,b

C1

2L

L∑
i=1

l (yi, f(xi)) +
C2

2U

U∑
i=1

exp
{
−sf(x′i)

2
}

+
1

2
‖w‖22 . (4)

Problem (4) does not incorporate the constraint in (3) yet. A possible way to

handle the balancing constraint in (3) is a relaxation that uses the following

linear approximation (Chapelle and Zien, 2005):

1

U

U∑
i=1

wTx′i + b = 2r − 1 , (5)

10

which can easily be enforced for a fixed r by first translating the unlabeled

points so that their mean is 0, and then fixing the offset b as b = 2r−1. The

resulting problem can then be solved using standard first-order procedures.

4. Distributed learning for S3VM

In this section, we first formulate a distributed optimization problem for

a ∇S3VM over a network of agents in Section 4.1. Then, we present two

alternative methods for solving the overall optimization problem in a fully

decentralized fashion in Sections 4.2 and 4.3.

4.1. Formulation of the problem

For the rest of this paper, we assume that labeled and unlabeled training

samples are not available on a single processor. Instead, they are distributed

over a network of N agents. In particular, we assume that the kth node has

access to Lk labeled samples, and Uk unlabeled ones, such that
∑N

k=1 Lk = L

and
∑N

k=1 Uk = U .

The network of the agents is modeled as a directed graph G = (V , E),

where V = {1, . . . , N} is the vertex (i.e., agent) set, and E is the set of

edges. The neighborhood of agent k (excluding node k) is defined as Nk =

{t | (t, k) ∈ E}; it sets the communication pattern between single-hop neigh-

bors: agents in Nk can communicate with node k. We introduce the weights

Ckt matching the graph G, i.e. Ckt > 0 if t ∈ Nk or t = k. We also define

the matrix C , (Ckt)
N
k,t=1. Specific ways of choosing these weights will be

discussed in the following. We make the following assumption on the network

connectivity.

11

Assumption 1: The graph G is strongly connected. Furthermore, the

weight matrix C satisfies C1 = 1 and 1TC = 1T .

Given the connectivity pattern among agents, we are interest in devis-

ing distributed solutions in the following setting: i) agents know their local

functions and data only; and ii) only inter-node communications between

single-hop neighbors are possible. This setting is particularly important in

all the applications where data are naturally distributed over the network,

and sharing local information with a central processor is either unfeasible or

not economical/efficient, owing to the large size of the network and volume

of data, time-varying network topology, energy constraints, and/or privacy

issues.

Following the rationale introduced in Section III, the distributed ∇S3VM

problem can be cast as:

min
w

N∑
k=1

lk(w) +
N∑
k=1

gk(w) + r(w) , (6)

where we have defined the following shorthands:

lk(w) =
C1

2L

Lk∑
i=1

l (yk,i, f(xk,i)) , (7)

gk(w) =
C2

2U

Uk∑
i=1

exp
{
−sf(x′k,i)

2
}
, (8)

r(w) =
1

2
‖w‖22 . (9)

In the previous equations, we use the double subscript (k, i) to denote the ith

sample available at the kth node, and we assume that the bias b has been fixed

12

a priori using the strategy detailed in the previous section. In a distributed

setting, this requires that each agent knows the mean of all unlabeled points

given by 1
U

∑U
i=1 x

′
i. This can easily be achieved, before starting the training

process, with a number of different in-network algorithms. For example,

the agents can compute the average using a standard consensus procedure

(Barbarossa et al., 2013), push-sum protocols (Hensel and Dutta, 2009) in a

P2P network, or a number of alternative techniques.

4.2. Solution 1: Distributed gradient descent

The first solution is based on the DGD procedure (Sayed, 2014b), i.e. an

algorithm for solving general distributed unconstrained optimization prob-

lems of the form:

min
w

N∑
k=1

Jk(w) , (10)

where Jk(·) is the local (smooth) cost function of the kth agent. Denoting

by wk[n] the local estimate of the kth node at time n, the DGD method

proceeds iteratively as:

ψk = wk[n]− α[n]∇Jk(w) , (11)

wk[n+ 1] =
N∑
t=1

Cktψt , (12)

where α[n] is a (possibly time-varying) step-size sequence, ∇(·) denotes the

gradient operator, and Ckt are the connectivity weights of the network. This

method can be seen as the combination of local descent steps followed by

variable exchanges and averaging of information among neighbors.

The DGD algorithm was first introduced in Tsitsiklis et al. (1986), and

13

was then largely used in the fields of distributed optimization (Nedić and

Ozdaglar, 2009; Nedić et al., 2010), distributed stochastic optimization (Chen

and Sayed, 2012, 2013), and adaptive filtering (Lopes and Sayed, 2008; Cat-

tivelli et al., 2008), among others.

All the previous art on DGD focused on the solution of convex versions of

problem (10). In our case, the gk(w) are non-convex, and the analysis in the

aforementioned papers cannot be used. However, convergence of a similar

family of algorithms in the case of non-convex (smooth) cost functions has

been recently studied in Bianchi and Jakubowicz (2013).

Customizing the DGD method in (11) to Problem (6), we obtain the

following local update at each agent:

ψk = wk[n]− αk[n]

(
∇lk(wk[n]) +∇gk(wk[n]) +

1

N
∇r(wk[n])

)
. (13)

Note that we have included a factor 1
N

in (13) in order to be consistent with

the formulation in (10). Defining the margin mk,i = yk,if(xk,i), we can easily

show that:

∇lk(w) = −C1

L

Lk∑
i=1

I(1−mk,i) ·mk,i (1−mk,i) , (14)

∇gk(w) = −sC2

U

Uk∑
i=1

exp
{
−sf(x′k,i)

2
}
f(x′k,i)x

′
k,i , (15)

∇r(w) = w , (16)

14

Algorithm 1: Distributed ∇S3VM using a diffusion gradient descent procedure.

Input: Regularization factors C1, C2, maximum number of iterations T .

1: Initialization:

2: wk[0] = 0, k = 1, . . . , N .

3: for n from 0 to T do

4: for k from 1 to N do in parallel

5: Compute auxiliary variable ψk using (13).

6: Combine estimates as wk[n+ 1] =
∑N

t=1Cktψt.

7: end for

8: end for

where I(·) is the indicator function defined for a generic scalar o ∈ R as:

I(o) =

1 if o ≤ 0

0 otherwise

.

The overall algorithm is summarized in Algorithm 1. Its convergence prop-

erties are illustrated in following theorem.

Theorem 1. Let {wk[n]}Nk=1 be the sequence generated by Algorithm 1, and

let w̄[n] = 1
N

∑N
k=1wk[n] be its average across the agents. Under Assumption

1, let us select the step-size sequence {α[n]}n such that i) α[n] ∈ (0, 1], for

all n, ii)
∑∞

n=0 α[n] = ∞; and iii)
∑∞

n=0 α[n]2 < ∞. Then, if the sequence

{w̄[n]}n is bounded 2, (a) [convergence]: all its limit points are stationary

2Note that this condition is not restrictive in practical implementations. Indeed, one
can always limit the behavior of the algorithm using a finite (but arbitrarily large) box con-
straint that guarantees the boundness of the sequence {w̄[n]}n, and thus the convergence
of the method.

15

solutions of problem (6); (b) [consensus]: all the sequences wk[n] asymp-

totically agree, i.e. limn→+∞ ‖wk[n]− w̄[n]‖2 = 0, k = 1, . . . , N .

Proof. See Bianchi and Jakubowicz (2013).

4.3. Solution 2: In-network successive convex approximation

The DGD algorithm is extremely efficient to implement, however, as we

discussed in Section 1, its convergence is often sub-optimal due to two main

reasons. First, the update in (13) considers only first order information and

does not take into account the fact that the local cost function has some

hidden convexity (since it is composed by the sum of a convex term plus

a non-convex term) that one can properly exploit. Second, each agent k

obtains information on the cost functions Jt(·), t 6= k, only in a very indi-

rect way through the averaging step in (11). In this section, we use a recent

framework for in-network non-convex optimization from Di Lorenzo and Scu-

tari (2015), which exploits the structure of nonconvex functions by replacing

their linearization (i.e., their gradient) with a “better” approximant, thus

typically resulting in enhanced practical convergence speed. In this section

we customize the NEXT algorithm from Di Lorenzo and Scutari (2015) to

our case, and we refer to the original paper for more details.

The main idea of NEXT is to parallelize the problem in (6) such that,

at each agent, the original (global) non-convex cost function is replaced

with a strongly convex surrogate that preserves the first order conditions

(Di Lorenzo and Scutari, 2015). To this aim, we associate to agent k the

surrogate Fk(w;wk[n]), which is obtained by: i) keeping unaltered the local

convex function lk(w) and the regularization function r(w); ii) linearizing

16

the local non-convex cost gk(w) and all the other (non-convex and unknown)

terms fl(w) and gl(w), l 6= k, around the current local iterate wk[n]. As a

result, the surrogate at node k takes the form:

Fk(w;wk[n]) = lk(w) + g̃k(w;wk[n]) + r(w)

+ πk(wk[n])T (w −wk[n]) ,
(17)

where

g̃k(w;wk[n]) = gk(wk[n]) +∇gTk (wk[n]) (w −wk[n]) , (18)

and πk(wk[n]) is defined as:

πk(wk[n]) =
∑
t6=k

∇hk(wk[n]) , (19)

with ∇hk(·) = ∇lk(·) + ∇gk(·). Clearly, the information in (19) related to

the knowledge of the other cost functions is not available at node k. To cope

with this issue, the NEXT approach consists in replacing πk(wk[n]) in (17)

with a local estimate π̃k[n] that asymptotically converges to πk(wk[n]), thus

considering the local approximated surrogate F̃ (w;wk[n], π̃k[n]) given by:

F̃k(w;wk[n], π̃k[n]) = lk(w) + g̃k(w;wk[n]) + r(w)

+ π̃k[n]T (w −wk[n]) .
(20)

In the first phase of the algorithm, each agent solves a convex optimization

problem involving the surrogate function in (20), thus obtaining a new es-

timate w̃k[n]. Then, an auxiliary variable zk[n] is computed as a convex

17

combination of the current estimate wk[n] and the new w̃k[n], as:

zk[n] = wk[n] + α[n] (w̃k[n]−wk[n]) . (21)

where α[n] is a possibly time-varying step-size sequence. This concludes the

optimization phase of NEXT. The consensus phase of NEXT consists of two

main steps. First, to achieve asymptotic agreement among the estimates at

different nodes, each agent updates its local estimate combining the auxiliary

variables from the neighborhood, i.e., for all k,

wk[n+ 1] =
N∑
t=1

Cktzk[n] . (22)

This is similar to the diffusion step in (12). Second, the update of the local

estimate π̃k[n] in (20) is computed in two steps: i) an auxiliary variable vk[n]

is updated through a dynamic consensus (Zhu and Mart́ınez, 2010) step as:

vk[n+ 1] =
N∑
t=1

Cktvt[n] +
(
∇hk(wk[n+ 1])−∇hk(wk[n])

)
; (23)

ii) the variable π̃k[n] is updated as:

π̃k[n+ 1] = Nvk[n+ 1]−∇hk(wk[n+ 1]) . (24)

The steps of the NEXT algorithm for Problem (6) are described in Algorithm

2. Its convergence properties are described by a Theorem completely similar

to Theorem 1, and the details on the proof can be found in Di Lorenzo and

Scutari (2015).

18

Algorithm 2: Distributed ∇S3VM using the In-Network Convex Approximation frame-
work.

Input: Regularization factors C1, C2, maximum number of iterations T .

1: Initialization:

2: wk[0] = 0, k = 1, . . . , N .

3: vk[0] = ∇hk(wk[0]), k = 1, . . . , N .

4: π̃k[0] = (N − 1)vk[0], k = 1, . . . , N .

5: for n from 0 to T do

6: for k from 1 to N do in parallel

7: Solve the local optimization problem:

x̃k[n] = arg min F̃k(w;wk[n], π̃k[n]) .

8: Compute zk[n] using (21).

9: end for

10: for k from 1 to N do in parallel

11: Perform consensus step in (22).

12: Update auxiliary variable using (23).

13: Set π̃k[n+ 1] as (24)..

14: end for

15: end for

19

Table 3: Description of the datasets. The fourth and fifth columns denote the size of the
training and unlabeled datasets, respectively.

Name Features Instances L U Ref.

G50C 50 550 40 455 (Chapelle et al., 2006a)
PCMAC 7511 1940 40 1700 (Chapelle et al., 2006a)
GARAGEBAND 44 790 40 670 (Mierswa and Morik, 2005)

5. Experimental Results

5.1. Experimental Setup

We tested the proposed distributed algorithms on three semi-supervised

learning benchmarks, whose overview is given in Tab. 3. For more details on

the datasets see Chapelle et al. (2006a) for the first two, and Mierswa and

Morik (2005) for GARAGEBAND.

- G50C is an artificial dataset, wherein labels correspond to Gaussians

in a 50-dimensional input space. The dataset is designed such that the

Bayes error is 5%.

- PCMAC corresponds to distinguishing among pc-related and mac-

related texts in the 20 Newsgroup dataset.3

- GARAGEBAND is a music classification dataset, whose input is

given by 49 features extracted according to the procedure detailed in

Mierswa and Morik (2005). The original dataset comprises 9 different

musical genres. In order to obtain a binary classification task, we select

3http://qwone.com/~jason/20Newsgroups/

20

http://qwone.com/~jason/20Newsgroups/

the two most prominent ones, namely ‘rock’ and ‘pop’, and discard the

rest of the dataset.

For G50C and GARAGEBAND, input variables are normalized between −1

and 1. The experimental results are computed over a 10-fold cross-validation,

and all the experiments are repeated 15 times. For each repetition, the

training folds are partitioned in one labeled and one unlabeled datasets,

according to the proportions given in Tab. 3. Results are then averaged over

the 150 repetitions.

We have implemented the proposed algorithms in an open-source MAT-

LAB toolbox4. Since in our implementation we are not concerned with the

analysis of communication over a realistic network, we implement a serial

version of the code to perform the simulations, in which the network is sim-

ulated artificially. We compare the following models:

- LIN-SVM: this is a fully supervised SVM with a linear kernel, trained

only on the labeled data. The model is trained using the LIBSVM

library (Chang and Lin, 2011).

- RBF-SVM: similar to before, but a RBF kernel is used instead. The

parameter for the kernel is set according to the internal heuristic of

LIBSVM.

- C-∇S3VM: this is a centralized ∇S3VM trained on both the labeled

and the unlabeled data using a gradient descent procedure.

4https://bitbucket.org/robertofierimonte/code-distributed-s3vm

21

https://bitbucket.org/robertofierimonte/code-distributed-s3vm

- DG-∇S3VM: in this case, training data (both labeled and unlabeled)

is distributed evenly across the network, and the distributed model is

trained using the diffusion gradient algorithm detailed in Section 4.2.

- NEXT-∇S3VM: data is distributed over the network as before, but

the model is trained through the use of the NEXT framework, as de-

tailed in Section 4.3. The internal optimization problem in (20) is

solved using a standard gradient descent procedure.

For C-∇S3VM, DG-∇S3VM and NEXT-∇S3VM we set s = 5 and a max-

imum number of iterations T = 500. In order to obtain a fair comparison

between the algorithms, we also introduce a stopping criterion, i.e. the algo-

rithms terminate when the norm of the gradient of the global cost function

in (6) at the current iteration is less than 10−5. Clearly, this is only for

comparison purposes, and a truly distributed implementation would require

a more sophisticated mechanism, which however goes outside the scope of

the present paper. The same value for the threshold is set for the gradient

descent algorithm used within the NEXT framework to optimize the local

surrogate function in (20). In this case, we let the gradient run for a max-

imum of T = 50 iterations. We note that, in general, we do not need to

solve the internal optimization problem to optimal accuracy, as convergence

of NEXT is guaranteed as long as the the problems are solved with increasing

accuracy for every iteration (Di Lorenzo and Scutari, 2015).

We searched the values of C1 and C2 by executing a 5-fold cross-validation

in the interval {10−5, 10−4, . . . , 103} using C-∇S3VM as in Chapelle and Zien

(2005). The values of these parameters are then shared with DG-∇S3VM

and NEXT-∇S3VM. For all the models, included NEXT’s internal gradient

22

Table 4: Optimal values of the parameters used in the experiments. In the first group
are reported the values of the regularization coefficients for the three models, averaged
over the 150 repetitions. In the following groups are reported the values of the initial
step-size and of the diminishing factor for C-∇S3VM, DG-∇S3VM and NEXT-∇S3VM
respectively.

Dataset C1 C2 αC
0 δC αDG

0 δDG αNEXT
0 δNEXT

G50C 1 1 1 0.55 1 0.55 0.6 0.8

PCMAC 100 100 0.1 0.55 1 0.9 0.5 0.8

GARAGEBAND 2 5 0.09 0.8 0.1 0.1 0.05 0.55

descent algorithm, the step-size α is chosen using a decreasing strategy given

by:

α[n] =
α0

(n+ 1)δ
, (25)

where α0, δ > 0 are set by the user. In particular, this strategy satisfies

the convergence conditions for both the DGD algorithm and NEXT. After

preliminary tests, we selected for every model the values of α0 and δ that

guarantee the fastest convergence. The optimal values of the parameters are

shown in Tab. 4.

The network topologies are generated according to the so-called ‘Erdős-

Rényi model’ (Newman, 2010), such that every edge has a 25% probability

of appearing. The only constraint is that the network is connected. The

topologies are generated at the beginning of the experiments and kept fixed

during all the repetitions.

23

We choose the weight matrix C using the Metropolis-Hastings strategy

(Lopes and Sayed, 2008):

Ckj =


1

max{dk,dj}+1
k 6= j, {k, j} ∈ E

1−
∑

j∈Nk

1
max{dk,dj}+1

k = j

0 k 6= j, {k, j} /∈ E

(26)

where dk is the degree of node k and Nk is the set of nodes’ indexes di-

rectly connected to node k. This choice of the weight matrix satisfies the

convergence conditions for both the distributed approaches.

5.2. Results and discussion

The first set of experiments consists in analyzing the performance of C-

∇S3VM, when compared to a linear SVM and RBF SVM trained only on the

labeled data. While these results are well known in the semi-supervised litera-

ture, they allow us to quantitatively evaluate the performance of C-∇S3VM,

in order to provide a coherent benchmark for the successive comparisons.

Results of this experiment are shown in Tab. 5.

We can see that, for all the datasets, C-∇S3VM outperforms standard

SVMs trained only on labeled data, with a reduction of the classification error

ranging from 2.37% on GARAGEBAND to 15.22% on PCMAC. Clearly, the

training time required by C-∇S3VM is higher than the time required by a

standard SVM, due to the larger number of training data, and to the use of

the gradient descent algorithm. Another important aspect to be considered

is that, with the only exception of G50C, the RBF-SVM fails in matching

the performance of the SVM with linear kernel due to higher complexity of

24

Table 5: Average value for classification error and computational time for the centralized
algorithms.

Dataset Algorithm Error [%] Time [s]

LIN-SVM 13.79 0.0008
G50C RBF-SVM 13.36 0.0005

C-∇S3VM 6.36 0.024

LIN-SVM 21.32 0.0035
PCMAC RBF-SVM 36.68 0.0032

C-∇S3VM 6.10 35.12

LIN-SVM 23.87 0.0010
GARAGEBAND RBF-SVM 27.92 0.0007

C-∇S3VM 21.50 0.2872

the model in relationship to the amount of training data.

Next, we investigate the convergence behavior of DG-∇S3VM and NEXT-

∇S3VM, compared to the centralized implementation. In particular, we test

the algorithm on randomly generated networks of N = 25 nodes. Results are

presented in Fig. 2. Particularly, panels on the left show the evolution of the

global cost function in (6), while panels on the right show the evolution of the

squared norm of the gradient. For readability, the graphs use a logarithmic

scale on the y-axis, while on the left we only show the first 50 iterations of

the optimization procedure. The results are similar for all three datasets,

namely, NEXT-∇S3VM is able to converge faster (up to one/two orders of

magnitude) than DG-∇S3VM, which can only exploit first order information

on the local cost functions. Indeed, both NEXT-∇S3VM and the centralized

implementation are able to converge to a stationary point in a relatively small

number of iterations, as shown by the panels on the left. The same can be

seen from the gradient norm evolution, shown on the right panels, where the

25

Iteration

0 10 20 30 40 50

O
b

je
ct

iv
e

fu
n
ct

io
n

1.2

1.4

1.6

1.8

2

2.2

C-NS3VM

DG-NS3VM (25 NODES)

NEXT-NS3VM (25 NODES)

(a) Objective function (G50C)

Iteration

0 100 200 300 400 500

G
ra

d
ie

n
t

n
o
rm

10
-15

10
-10

10
-5

10
0

10
5

C-NS3VM

DG-NS3VM (25 NODES)

NEXT-NS3VM (25 NODES)

(b) Gradient norm (G50C)

Iteration

0 10 20 30 40 50

O
b

je
ct

iv
e

fu
n

ct
io

n

100

150

200

250

300

C-NS3VM

DG-NS3VM (25 NODES)

NEXT-NS3VM (25 NODES)

(c) Objective function (PCMAC)

Iteration

0 100 200 300 400 500

G
ra

d
ie

n
t

n
o

rm

10
-2

10
0

10
2

10
4

C-NS3VM

DG-NS3VM (25 NODES)

NEXT-NS3VM (25 NODES)

(d) Gradient norm (PCMAC)

Iteration

0 10 20 30 40 50

O
b
je

ct
iv

e
fu

n
ct

io
n

3

4

5

6

7

C-NS3VM

DG-NS3VM (25 NODES)

NEXT-NS3VM (25 NODES)

(e) Objective function (GARAGE-
BAND)

Iteration

0 100 200 300 400 500

G
ra

d
ie

n
t

n
o

rm

10
-3

10
-2

10
-1

10
0

10
1

10
2

C-NS3VM

DG-NS3VM (25 NODES)

NEXT-NS3VM (25 NODES)

(f) Gradient norm (GARAGEBAND)

Figure 2: Convergence behavior of DG-∇S3VM and NEXT-∇S3VM, compared to C-
∇S3VM. The panels on the left show the evolution of the global cost function, while the
panels on the right show the evolution of the squared norm of the gradient.

26

LIN RBF C DG NEXT

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy
 [

%
]

0

0.05

0.1

0.15

0.2

0.25

0.3

(a) G50C

LIN RBF C DG NEXT

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy
 [

%
]

0

0.1

0.2

0.3

0.4

0.5

(b) PCMAC

LIN RBF C DG NEXT

C
la

ss
if

ic
at

io
n
 a

cc
u

ra
cy

 [
%

]

0.15

0.2

0.25

0.3

0.35

0.4

(c) GARAGEBAND

Figure 3: Box plot for the classification accuracy of the 5 algorithms, in the case N = 25.
The central line is the median, the edges are the 25th and 75th percentiles, and the whiskers
extend to the most extreme data points. For readability, the names of the algorithms
have been abbreviated to LIN (LIN-SVM), RBF (RBF-SVM), C (C–∇S3VM), DG (DG-
∇S3VM) and NEXT (NEXT-∇S3VM).

fast convergence of NEXT-∇S3VM is even more pronounced. Similar insights

can be obtained by the analysis of the box plots in Fig. 3, where we also

compare with the results of LIN-SVM and RBF-SVM obtained previously.

The same conclusions are also obtained with a rigorous statistical test. In

particular, the corrected Friedman test (see Demšar (2006) for details and

a discussion on its significance when comparing classifiers) finds significant

differences among the results of the 5 algorithms, with an α = 0.05 confidence

27

value. A set of post-hoc Nemenyi tests with the same confidence interval

reveals significant differences between LIN-SVM, and both C-∇S3VM and

NEXT-∇S3VM, and similarly for RBF-SVM.

As a final experiment, we investigate the scalability of the distributed

algorithms, by analyzing the training time and the test error of DG-∇S3VM

and NEXT-∇S3VM when varying the number of nodes in the network from

N = 5 to N = 40 by steps of 5. Results of this experiment are shown in

Fig. 4. The three panels on the left show the evolution of the classification

error, while the three panels on the right show the evolution of the training

time. Results of LIN-SVM, RBF-SVM and C-∇S3VM are shown with dashed

lines for comparison. It is possible to see that NEXT-∇S3VM can track

efficiently the centralized solution in all settings, regardless of the size of

the network, while DG-∇S3VM is not able to properly converge (in the

required number of iterations) for larger networks on PCMAC. With respect

to training time, results are more varied. Generally speaking, NEXT-∇S3VM

requires in average more training time than DG-∇S3VM. However, for large

datasets (PCMAC and GARAGEBAND) both algorithms are comparable in

training time with the centralized solution and, more notably, their training

time generally decreases for bigger networks.

It is worth mentioning here that the results presented in this paper

strongly depend on our selection of the step-size sequences, and the spe-

cific surrogate function in (20). In the former case, it is known that the

convergence speed of any gradient descent procedure can be accelerated by

considering a proper adaptable step-size criterion. Along a similar reasoning,

the training time of NEXT-∇S3VM can in principle be decreased by loosen-

28

Number of nodes

5 10 15 20 25 30 35 40

C
la

s
s
if

ic
a
ti

o
n
 E

rr
o
r

0.05

0.1

0.15

0.2

LIN-SVM

RBF-SVM

C-NS3VM

DG-NS3VM

NEXT-NS3VM

(a) Classification error (G50C)

Number of nodes

5 10 15 20 25 30 35 40

T
ra

in
in

g
 t

im
e

[s
]

10
-4

10
-2

10
0

10
2

LIN-SVM

RBF-SVM

C-NS3VM

DG-NS3VM

NEXT-NS3VM

(b) Training time (G50C)

Number of nodes

5 10 15 20 25 30 35 40

C
la

s
s
if

ic
a
ti

o
n

 E
rr

o
r

0.1

0.2

0.3

0.4

0.5

0.6

LIN-SVM

RBF-SVM

C-NS3VM

DG-NS3VM

NEXT-NS3VM

(c) Classification error (PCMAC)

Number of nodes

5 10 15 20 25 30 35 40

T
ra

in
in

g
 t

im
e

[s
]

10
-4

10
-2

10
0

10
2

10
4

LIN-SVM

RBF-SVM

C-NS3VM

DG-NS3VM

NEXT-NS3VM

(d) Training time (PCMAC)

Number of nodes

5 10 15 20 25 30 35 40

C
la

s
s
if

ic
a
ti

o
n
 E

rr
o
r

0.22

0.24

0.26

0.28

0.3

0.32

0.34

LIN-SVM

RBF-SVM

C-NS3VM

DG-NS3VM

NEXT-NS3VM

(e) Classification error (GARAGEBAND)

Number of nodes

5 10 15 20 25 30 35 40

T
ra

in
in

g
 t

im
e

[s
]

10
-4

10
-2

10
0

10
2

10
4

LIN-SVM

RBF-SVM

C-NS3VM

DG-NS3VM

NEXT-NS3VM

(f) Training time (GARAGEBAND)

Figure 4: Training time and test error of GD-∇S3VM and NEXT-∇S3VM when varying
the number of nodes in the network from N = 5 to N = 40. Results for LIN-SVM,
RBF-SVM and C-∇S3VM are shown with dashed lines for comparison.

29

ing the precision to which the internal surrogate function is optimized, due to

the convergence properties of NEXT already mentioned above. Finally, we

can also envision a different choice of surrogate function for NEXT-∇S3VM,

in order to achieve a different trade-off between training time and speed of

convergence. As an example, we can replace the hinge loss lk(w) with its

first-order linearization l̃k(w), similarly to (18). In this case, the resulting

optimization problem would have a closed form solution, resulting in a faster

training time per iteration (at the cost of more iterations required for con-

vergence).

Overall, the experimental results suggest that both algorithms can be ef-

ficient tools for training a ∇S3VM in a distributed setting, wherein NEXT-

∇S3VM is able to converge extremely faster, at the expense of a larger train-

ing time. Thus, the choice of a specific algorithm will depend on the applica-

tive domain, and on the amount of computational resources (and size of the

training dataset) available to each agent.

6. Conclusions

In this paper, we have investigated the problem of learning a semi-supervised

support vector machine, when training data is distributed over a network

of interconnected agents. Particularly, we have leveraged over recent ad-

vances on distributed non-convex optimization, in order to provide two flex-

ible mechanisms with a different balance in computational requirements and

speed of convergence. Overall, our work is one of the first steps toward semi-

supervised distributed learning which, as we stated in Section 1, has a large

number of practical applications in real-world networks.

30

In this sense, a natural extension would be to consider different semi-

supervised techniques to be extended to the distributed setting, particu-

larly among those developed for the S3VM (Chapelle et al., 2008), including

the possibility of having more general regularizers instead of the L2 norm

(Kurková, 2005; Gnecco and Sanguineti, 2010). A second line of research in-

volves relaxing some of the assumptions we made in this work, particularly in

terms of synchronous updates (requiring a mechanism for correctly synchro-

nizing the agents in the network), and fixed connectivity of the underlying

graph. Indeed, NEXT was originally designed for time-varying connectivities

(Di Lorenzo and Scutari, 2015), while there has been multiple efforts recently

in order to design asynchronous gradient updates over networks (Zhao and

Sayed, 2015). Finally, as discussed in the previous section, we can customize

the proposed algorithms with adaptive criteria for the internal solvers, or

different choices of the surrogate cost function in NEXT-∇S3VM. We are

planning to consider all these aspects in our future works.

References

Adankon, M. M., Cheriet, M., Biem, A., 2009. Semisupervised least squares

support vector machine. IEEE Transactions on Neural Networks 20 (12),

1858–1870.

Ang, H. H., Gopalkrishnan, V., Hoi, S. C., Ng, W. K., 2013. Classification in

P2P networks with cascade support vector machines. ACM Transactions

on Knowledge Discovery from Data 7 (4), 20.

Barbarossa, S., Sardellitti, S., Di Lorenzo, P., 2013. Distributed detection

31

and estimation in wireless sensor networks. In: Chellapa, R., Theodoridis,

S. (Eds.), E-Reference Signal Processing. Elsevier, pp. 329–408.

Bianchi, P., Jakubowicz, J., 2013. Convergence of a multi-agent projected

stochastic gradient algorithm for non-convex optimization. IEEE Transac-

tions on Automatic Control 58 (2), 391–405.

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., 2011. Distributed

optimization and statistical learning via the alternating direction method

of multipliers. Foundations and Trends R© in Machine Learning 3 (1), 1–

122.

Cattivelli, F. S., Lopes, C. G., Sayed, A. H., 2008. Diffusion recursive least-

squares for distributed estimation over adaptive networks. IEEE Transac-

tions on Signal Processing 56 (5), 1865–1877.

Chang, C.-C., Lin, C.-J., 2011. LIBSVM: A library for support vector ma-

chines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–

27:27.

Chapelle, O., Schölkopf, B., Zien, A., 2006a. Semi-supervised learning.

Chapelle, O., Sindhwani, V., Keerthi, S., 2008. Optimization techniques for

semi-supervised support vector machines. Journal of Machine Learning

Research 9, 203–233.

Chapelle, O., Sindhwani, V., Keerthi, S. S., 2006b. Branch and bound for

semi-supervised support vector machines. In: Advances in neural informa-

tion processing systems. pp. 217–224.

32

Chapelle, O., Zien, A., 2005. Semi-supervised classification by low density

separation. In: Proceedings of the tenth international workshop on artifi-

cial intelligence and statistics. Vol. 1. pp. 57–64.

Chen, J., Sayed, A. H., 2012. Diffusion adaptation strategies for distributed

optimization and learning over networks. IEEE Transactions on Signal

Processing 60 (8), 4289–4305.

Chen, J., Sayed, A. H., 2013. Distributed Pareto optimization via diffusion

strategies. IEEE Journal of Selected Topics in Signal Processing 7 (2),

205–220.

Chen, J., Wang, C., Sun, Y., Shen, X. S., 2011. Semi-supervised Laplacian

regularized least squares algorithm for localization in wireless sensor net-

works. Computer Networks 55 (10), 2481–2491.

Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., Zhu, M. Y., 2002. Tools for

privacy preserving distributed data mining. ACM SiGKDD Explorations

Newsletter 4 (2), 28–34.

Demšar, J., 2006. Statistical Comparisons of Classifiers over Multiple Data

Sets. Journal of Machine Learning Research 7, 1–30.

Di Lorenzo, P., Sayed, A. H., 2013. Sparse distributed learning based on

diffusion adaptation. IEEE Transactions on Signal Processing 61 (6), 1419–

1433.

Di Lorenzo, P., Scutari, G., 2015. NEXT: In-Network Nonconvex Optimiza-

tion. IEEE Transactions on Signal and Information Processing over Net-

works, under review.

33

Facchinei, F., Scutari, G., Sagratella, S., 2015. Parallel selective algorithms

for nonconvex big data optimization. IEEE Transactions on Signal Pro-

cessing 63 (7), 1874–1889.

Fierimonte, R., Scardapane, S., Uncini, A., Panella, M., 2015. Fully de-

centralized semi-supervised learning via privacy-preserving matrix com-

pletion. IEEE Transactions on Neural Networks and Learning Systems,

under review.

Flouri, K., Beferull-Lozano, B., Tsakalides, P., 2006. Training a SVM-based

classifier in distributed sensor networks. In: Proceedings of 14nd European

Signal Processing Conference (EUSIPCO’06). Vol. 2006. pp. 1–5.

Forero, P. A., Cano, A., Giannakis, G. B., 2010. Consensus-based distributed

support vector machines. Journal of Machine Learning Research 11, 1663–

1707.

Fung, G., Mangasarian, O. L., 2001. Semi-superyised support vector ma-

chines for unlabeled data classification. Optimization methods and soft-

ware 15 (1), 29–44.

Gnecco, G., Sanguineti, M., 2010. Regularization techniques and suboptimal

solutions to optimization problems in learning from data. Neural Compu-

tation 22 (3), 793–829.

Hensel, C., Dutta, H., 2009. GADGET SVM: a gossip-based sub-gradient

svm solver. In: Proceedings of the 2009 International Conference on Ma-

chine Learning (ICML’2009).

34

Jaggi, M., Smith, V., Takác, M., Terhorst, J., Krishnan, S., Hofmann, T.,

Jordan, M. I., 2014. Communication-efficient distributed dual coordinate

ascent. In: Advances in Neural Information Processing Systems. pp. 3068–

3076.

Joachims, T., 1999. Transductive Inference for Text Classification Using Sup-

port Vector Machines. Proceedings of the 1999 International Conference

on Machine Learning (ICML’99), 200–209.

Kurková, V., 2005. Neural network learning as an inverse problem. Logic

Journal of IGPL 13 (5), 551–559.

Lee, C.-P., Roth, D., 2015. Distributed Box-Constrained Quadratic Opti-

mization for Dual Linear SVM. In: Proceedings of the 32nd International

Conference on Machine Learning (ICML’15). ICML.

Lee, S., Nedic, A., 2013. Distributed random projection algorithm for convex

optimization. IEEE Journal of Selected Topics in Signal Processing 7 (2),

221–229.

Li, Y.-f., Tsang, I. W., Kwok, J. T., 2013. Convex and Scalable Weakly

Labeled SVMs. Journal of Machine Learning Research 14, 2151–2188.

Lopes, C. G., Sayed, A. H., 2008. Diffusion least-mean squares over adaptive

networks: Formulation and performance analysis. IEEE Transactions on

Signal Processing 56 (7), 3122–3136.

Lu, Y., Roychowdhury, V., Vandenberghe, L., 2008. Distributed parallel sup-

port vector machines in strongly connected networks. IEEE Transactions

on Neural Networks 19 (7), 1167–1178.

35

Mateos, G., Bazerque, J. A., Giannakis, G. B., 2010. Distributed sparse linear

regression. IEEE Transactions on Signal Processing 58 (10), 5262–5276.

Mierswa, I., Morik, K., 2005. Automatic feature extraction for classifying

audio data. Machine learning 58 (2-3), 127–149.

Navia-Vázquez, A., Gutierrez-Gonzalez, D., Parrado-Hernández, E.,

Navarro-Abellan, J. J., 2006. Distributed support vector machines. IEEE

Transactions on Neural Networks 17 (4), 1091–1097.

Nedić, A., Ozdaglar, A., 2009. Distributed subgradient methods for multi-

agent optimization. IEEE Transactions on Automatic Control 54 (1), 48–

61.

Nedić, A., Ozdaglar, A., Parrilo, P., et al., 2010. Constrained consensus and

optimization in multi-agent networks. IEEE Transactions on Automatic

Control 55 (4), 922–938.

Newman, M., 2010. Networks: an introduction. Oxford University Press.

Predd, J. B., Kulkarni, S. R., Poor, H. V., 2006. Distributed learning in

wireless sensor networks. IEEE Signal Processing Magazine 23 (4), 56–69.

Rifkin, R., Klautau, A., 2004. In defense of one-vs-all classification. Journal

of Machine Learning Research 5, 101–141.

Sayed, A. H., 2014a. Adaptation, learning, and optimization over networks.

Foundations and Trends in Machine Learning 7 (4-5), 311–801.

Sayed, A. H., 2014b. Adaptive networks. Proceedings of the IEEE 102 (4),

460–497.

36

Scardapane, S., Comminiello, D., Scarpiniti, M., Uncini, A., 2015a. A semi-

supervised random vector functional-link network based on the transduc-

tive framework. Information Sciences, under press.

Scardapane, S., Dianhui, W., Panella, M., 2015b. A decentralized training

algorithm for echo state networks in distributed big data applications.

Neural Networks, under press.

Scardapane, S., Wang, D., Panella, M., Uncini, A., 2015c. Distributed learn-

ing for random vector functional-link networks. Information Sciences 301,

271–284.

Scutari, G., Facchinei, F., Song, P., Palomar, D. P., Pang, J.-S., 2014. De-

composition by partial linearization: Parallel optimization of multi-agent

systems. IEEE Transactions on Signal Processing 62 (3), 641–656.

Tsitsiklis, J. N., Bertsekas, D. P., Athans, M., et al., 1986. Distributed asyn-

chronous deterministic and stochastic gradient optimization algorithms.

IEEE Transactions on Automatic Control 31 (9), 803–812.

Vapnik, V., 1998. Statistical learning theory. Vol. 1. Wiley New York.

Wang, D., Zhou, Y., 2012. Distributed support vector machines: An

overview. In: Proceedings of the 2012 24th Chinese Control and Decision

Conference (CCDC’12). IEEE, pp. 3897–3901.

Zhao, X., Sayed, A. H., 2015. Asynchronous adaptation and learning over

networkspart i: Modeling and stability analysis. IEEE Transactions on

Signal Processing 63 (4), 811–826.

37

Zhu, M., Mart́ınez, S., 2010. Discrete-time dynamic average consensus. Au-

tomatica 46 (2), 322–329.

38

	Introduction
	Related works
	Semi-Supervised Support Vector Machines
	Distributed learning for S3VM
	Formulation of the problem
	Solution 1: Distributed gradient descent
	Solution 2: In-network successive convex approximation

	Experimental Results
	Experimental Setup
	Results and discussion

	Conclusions

